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ON THE COINCIDENCE SET IN VARIATIONAL
INEQUALITIES

HANS LEWY

Variational inequalities, i.e., problems of the calculus of variations where in-
equalities limit the space of competing functions, have received much attention
in recent years. A large literature, too numerous to be listed in this note, deals
with existence and smoothness of solutions in their dependence on the smooth-
ness of the bounding inequalities. An attractive feature of these problems lies in
that the set of points where these inequalities become essential for the solution
is not known a priori. The skill of the workers provides a setting of function
spaces such that the distinction between points, where the competing function
is “free” and its variation is encumbered, does not affect its smoothness; shows
existence of a solution in this space and then proceeds to prove a higher degree
of smoothness, again by arguments which do not necessitate a precise know-
ledge of the nature of the set S where the bounding inequalities become effec-
tive. Very little indeed is known about this set S: it does in general not depend
continuously on the data of the problem; in a few cases under strong convexity
assumptions a certain simplicity of S has been ascertained.

The elusiveness of the nature of S is the challenge which motivated the present
paper, to be considered a sequal to [1]. We are concerned with only the simplest
nontrivial problem of variational inequalities, but succeed in clarifying the
topological character of $ in this case.

For the sake of brevity and self-sufficiency we have chosen to speak here
only of properties of certain superharmonics without elaborating their well-
known connection with the Dirichlet integral which actually provides the vari-
ational background described in the foregoing introduction.

1. Lemma 1.1. Let (A, B) be an open interval of R' and contain the com-

" pact support S of a measure p with (S) > 0. Let u(x):f—log |x — ¥|du),

S
x € R, and suppose the existence of a C'[A, Bl function {(x) such that
f(x) < ulx), xe(4,B); f(x) = u(x), xeS§.

Then p is absolutely continuous in (A, B).
Proof. It was shown in [1] that u(x) ¢ C'(4, B). Extend u(x) continuously
into the upper half of a z-plane as harmonic function by
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u(z) = f—log lz — yldp(y.

8

A conjugate harmonic is

2(z) = f—ﬂ(z — Ydu®) ,

where #(z — y) is the angle of the vector z — y with the positive direction of

B
R'. As z tends to a point x of R', v(z) tends to —nf dp(y), which is a con-

tinuous function of x since the continuity of u(x) forces u(x), the measure of
any single point x, to vanish. u(z) + iv(z) = F(z) is holomorphic for z in the
upper half plane, continuous on its closure, with boundary values on R' which
are of bounded variation on every compact portion of R such as [4, B]. A vari-
ant of F. and M. Riesz’ theorem applies: these boundary values are absolutely
continuous on every compact portion of R'. In fact, take a C5(4, B) function

p(x) of compact support with p(x) > 0 and pr(y)dy = p(S) and set

F.\(z) = fw — log (z — »)p(dy .

— o

The difference F(z) — F,(z) is holormorphic in the upper half plane and as-
sumes continuous boundary values on R'. Integration by parts yields that F(z)
— Fi(z) -0 as z— o and, if Rez < 4 or Rez > B, that |F'(z) — Fi(2)] <

#(S) ||z — B|"* — |z — A|*|. Hence f“' |d(F(x) — F,(x)| < o, so that F(z)

— F\(z) may be regarded, through a conformal map of the upper half z-plane
on the unit disc of a {-plane, as holomorphic function of { with boundary
values of bounded variation. By F. and M. Riesz these are absolutely con-
tinuous. Hence F(x) — F,(x) is absolutely continuous as function of x on any
bounded portion of R* in view of the boundednes of |dz/d{| on that portion.

B
Moreover, Fy(x) is continuous, hence F(x), in particular InF(x) = —r f du(y),

is absolutely continuous.

We write F'(z) = U(z) + iV(2). Re F'(z) = U(2) is continuous on Imz > 0
by the quoted theorem of [1], and tends to zero as z — <. Therefore there is
an M with M > |U(2)|. Put, with the above meaning of ¢,

FR=%Q =00+ ¥F© .

F'(2)(d¢/dz) is holomorphic in Im z > 0; the primitive function
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ag ag J‘ ax
Fl(9)=>dz = F()—= — | F(7)—=d
f ()dz ()dz ()dz2 ‘
is readily seen to be bounded and continuous in Im z > 0. This means that

G(O) = f (G — GO)AZ/C is continuous in |¢] < 1, and Gy = Pe (),

the Poisson integral of the boundary values of G,; consequently G(£) = P4;(2)
if |} < 1. Hence G{{) is a holomorphic function of £ in |¢] < 1, representable
asPoisson integral of its almost everywhere existing (normal) boundary values.
Such a function is said to belong to the Hardy class H'.

2. Lemma 2.1. G*{) belongs to H'.

Proof. For 0 <r <1,

2z T e ~ ~
f G (ret*)dp = 22G¥0) = f T@ — 7 4 20V redo = ¢, + ic,
0 0

with real c¢,;. Since }U] <M,

27 o L
f Prenyde — —c, + f P < —c, + 22M?
0 0

Thus fGZ(C)dC is bounded in |{| < 1 and of uniformly bounded variation on

all cireles ¢ = . Therefore G,(0) = [ (G'(Q) — GXO)dZ/¢ = Po,(0), GO =

Ps:(0), by F. and M. Riesz. The bou~ndary values ~of~ G* exist almost every-
where and thus are given by those of U? — V* + 2iUV.
3. Theorem 3.1. Ler p be a measure of compact support S contained in

an interval (A,B) of R', ¢(S) > 0, and u(x) = f — loglx — y|du(y) its

S
logarithmic potential. Suppose there exists a real function f(x), analytic in [A,
B] and such that

u(x) > f(x), xe(4,B) ; u(x) = f(x), xeS.

Then S is the union of finitely many disjoint intervals.
Proof. There is a neighborhood N of (4, B) in the z-plane into which f(x)
can be extended as holomorphic function f(z). Consider

F'@ — @) = U + iV — df/dz)

which is holomorphic in NN {z: Im z>0} and assumes on (4; B) almost
everywhere the boundary values

Ux) — df]dx)* — V¥x) + 22U — df/dx)V .
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The primitive function f z(F’(z) — (2))*dz has on (A, B) the continuous
4

boundary values

f (U — dfjdwy — Vhdx' + 2 f U — dfjdx)Vax'

on account of Lemma 2.1. Now the second integral vanishes on (A4, B) since
U(x') =du/dx=df|dx for x'e S, and V(x') =dv/dx=0a.e. for x'¢(4,B) — S.
It follows that the first integral is analytically extensible into a plane neighbor-
hood of (4, B). In particular, it is analytic and has an analytic derivative
denoted by g(x), and

gx) = (U — df/dx)’ — V*(x)

almost everywhere on (4, B). Accordingly we may, if necessary, redefine ¥'(x)
on a set of measure zero, so as to make — V' (x) continuous and >0, since we
know that U(x), df/dx, g(x) are continuous. This improved V'(x) has the same
integral #(x) as before and can be substituted in all relations involving inte-
gration.

g(x) is not identically zero, for on S we have g(x) = —V*(x) and we know

rer(x)dx = —u(S) #0. As —V(x) >0 a.e. on §, we have g(x) <0 on S
S

excepting finitely many points (g being analytic). Conversely, if g(x) < 0, then
certainly V*(x) #+ 0, —V(x) > 0, x ¢ §. It follows that .S is the union of disjoint
intervals at whose endpoints g(x) changes sign, and we have the formulas

—V(x) =+ —gx),xeS; V&) =0,xe(4,B) — S,

@D U(x) = df/dx,x €S ; U(x) = df/dx+/g(x),xe(4,B) — S .
In the last equation a change of sign can occur only at a root of g(x) of even
multiplicity. More is true. Let (a, b) be a component of (4, B) — S, with ae S,
beS. Then u(a) = f(a), u(x) > f(x) if x > a and near a, so that du/dx > df /dx
for x near and >a; hence we have + in (3.1). Near b for x <{b we have
similarly df/dx > du/dx, hence the sign — in (3.1). Hence there lies between
a and b aroot of g(x) of even multiplicity. Moreover, the set {x: x € (4, B), u(x)
= f(x)} exceeds S by no more than finitely many points.

Remark. Theorem 3.1 remains true if the straight arc [4, B] is replaced
by any analytic Jordan arc J. To see this let w: J — [A4, B] be an analytic dif-
feomorphism. Put for any Borel set E of J, u(E) = v(w(E)). With SCJ, we
have
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[~ tog1x — /) = [~ tog o) — 3/ &)
N (8

k=
+f |w()— TR

It is readily verified that the second integral is an analytic function of x for
xeJ, hence of w(x) ¢ [4, B]. Thus the first integral on the right satisfies the
conditions of the theorem as function of w(x), and w(S) is a union of finitely
many disjoint intervals. The same is then true for S C J.

4. A case where Theorem 3.1 applies is furnished by

Theorem 4.1. Let 2 be a smooth bounded domain of R*, and the interval
[A, B] of an R* axis be C 2. Let (x),xel[A, B], be real and analytic, and
denote by h(z) the smallest superharmonic in 2, continuous in 202, >0
on 02 and such that h(x) > (x), if xe (A, B). Assume that ¥(x) < 0 outside
a compact subset of (A, B), but not identically < 0 on (A, B). Write h(z) =

f G(z, y)du(y), where G is Green’s function of 2 and y is a measure of com-

N

pact support S C (A, B). Then S is the union of finitely many disjoint intervals.
Proof. G(z,z')y = —log|z — Z'| + 7(z,z'), where 7 is analytic for z, Z" ¢ 2.

Therefore

() = h(z) — f £z, V)du(y) = f — log|z — y| du(»)

N N

has the property:
M) 290 — [ 0de0) = 1), xe (B,
S
ux) = flx),  xeS,
with f(x) analytic in [4, B], and hence Theorem 3.1 applies.
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